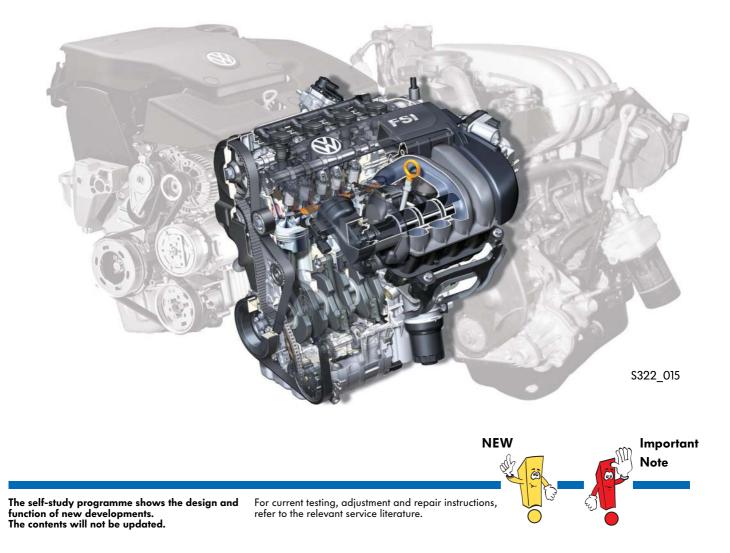


Self-study programme 322

The 2.01 FSI engine with 4-valve technology

Design and function



The 2.0l engine is based on the tried and tested 827/113 series.

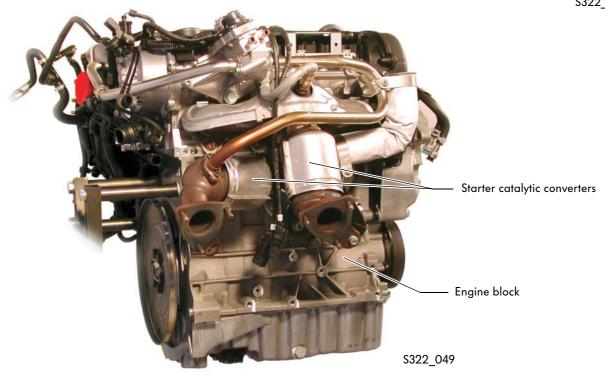
Thanks to FSI technology (Fuel Stratified Injection), the 2.0l petrol engine has taken on a new dimension. FSI engines are more economic, cleaner and more responsive than multi-point injection engines.

They also meet today's requirements in terms of low consumption, environmental issues and increased driving fun. The Volkswagen 1.4-litre/77kW FSI engine, the pioneer in this new generation of petrol engines, demonstrated these advantages at the end of 2000 when it was used in the Lupo. It was then followed by the 1.6-litre/81kW FSI and 1.4-litre/ 63kW FSI in the Polo.

This self-study programme should familiarise you with the new technical features of this engine.

Contents

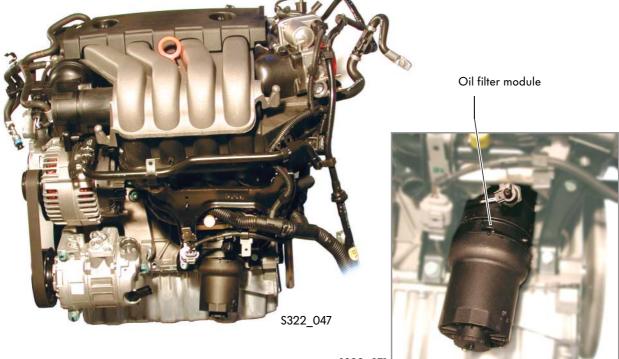
Introduction	• • • • • •	• • • •	• • • •	••••	••••	• • • •	••••	4
Engine mechan	ics	••••	• • • •	••••	• • • •	••••	••••	6
Engine manage	ement.	••••	• • • •	••••	• • • •	••••	1	10
Functional diag	jram	••••	• • • •	••••	• • • •	•••	1	18
Service	•••••	• • • •	• • • •	• • • •	••••	••••	2	20
Test yourself	•••••	• • • •	• • • •	••••	••••	••••	2	22



Description of engine

Using the Volkswagen Audi platform, the 2.0-litre FSI engine appeared for the first time in the Audi A4, longitudinally mounted with the engine code AWA. In February 2003, the 2.0I FSI engine with the code AXW, identical with the Volkswagen version, was installed transversely in the Audi A3. The following components have been further developed to meet the high demands for engine performance and economy:

- An aluminium engine block with cast-iron liners
- A water-cooled exhaust gas recirculation valve (EGR)
- An exhaust system with two starter catalytic converters fitted close to the engine



Exhaust gas recirculation valve

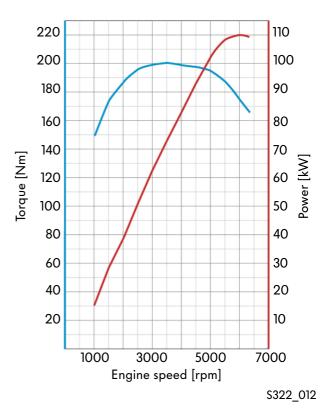
- An intake manifold with change-over barrel for switching between the torque and power channels
- A new oil filter module
- Bosch Motronic MED 9.5.10
- Four valves per cylinder, operated via roller rocker fingers with upright hydro-elements
- Aluminium cylinder head with two overhead camshafts and continuous inlet camshaft timing adjustment
- Direct fuel injection with demand-regulated high-pressure pump

S322_071

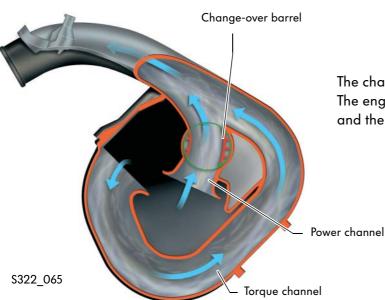
The 2.01/110kW FSI engine with 4-valve technology

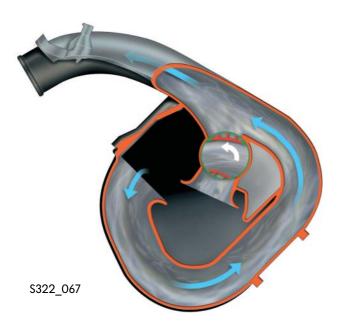
The 2.01/110kW FSI engine was used in the Audi A3 in February 2003. Volkswagen used the engine for the first time in October 2003 in the Touran. It will be available for the Golf from the start of 2004.

Technical features


- Single-piston high-pressure pump
- Plastic variable intake manifold
- Intake manifold with continuously adjustable charge direction flaps/ intake manifold flaps
- Water-cooled exhaust gas recirculation valve
- Roller rocker finger with hydraulic support element
- Two overhead camshafts with continuous inlet camshaft adjustment
- Balancer shaft gear assembly in sump
- Air-guided combustion method

Technical data


Engine code	AXW		
Туре	4-cylinder in-line engine		
Displacement [mm ³]	1984		
Bore [mm]	82.5		
Stroke [mm]	92.8		
Valves per cylinder	4		
Compression ratio	11.5:1		
Maximum output	110kW at 6000rpm		
Maximum torque	200Nm at 3500rpm		
Engine management	Bosch Motronic MED 9.5.10		
Fuel	Unleaded 98 RON		
	(Unleaded 95 RON with		
	reduction in performance)		
Exhaust gas treatment	NO _x storage catalytic		
	converter and 2 starter		
	catalytic converters		
Emissions standard	EU 4		


Torque and power diagram

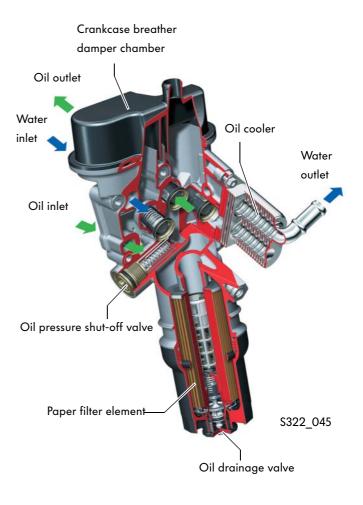
Intake manifold with change-over barrel

The two-stage variable intake manifold helps provide the required power and torque characteristics. The pneumatic switching of the change-over barrels from torque to power position is map-controlled. The load, speed and temperature are the relevant variables for this process.

The change-over barrel in power position. The engine draws in air via the power channel and the torque channel.

The change-over barrel in torque position. The engine draws in air only via the torque channel.

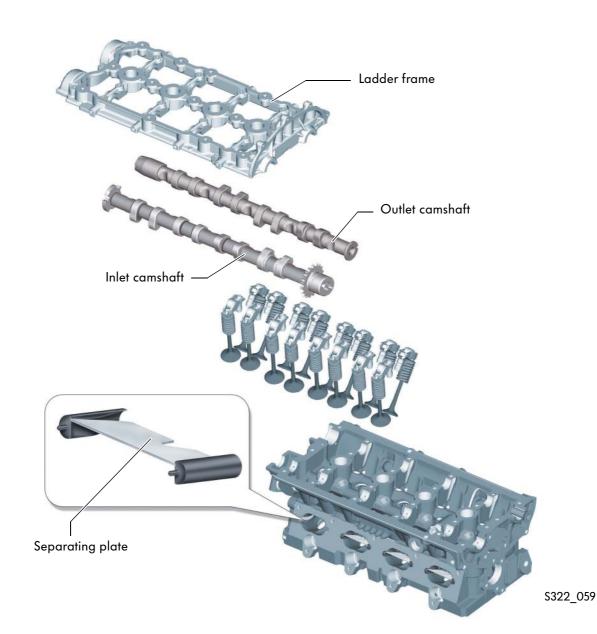
Intake manifold lower part


The lower part of the intake manifold contains four intake manifold flaps that are adjusted by the V157 control motor via a common shaft. The G336 potentiometer integrated in the control motor is used to indicate the flap position to the J220 engine control unit.

The oil filter module

The new oil filter module was developed as a highly integrated plastic unit. Its components include:

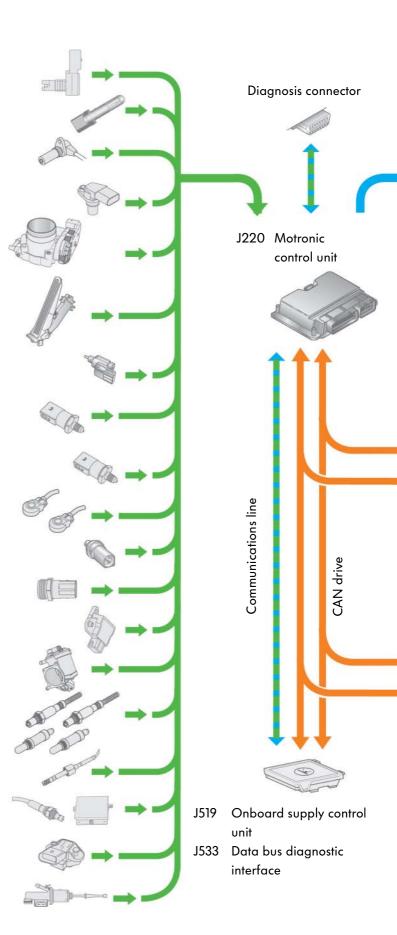
- An oil pressure shut-off valve
- A paper filter element to filter the oil
- An integrated water-cooled oil cooler
- A damper chamber on the crankcase breather for the liquid-vapour separator

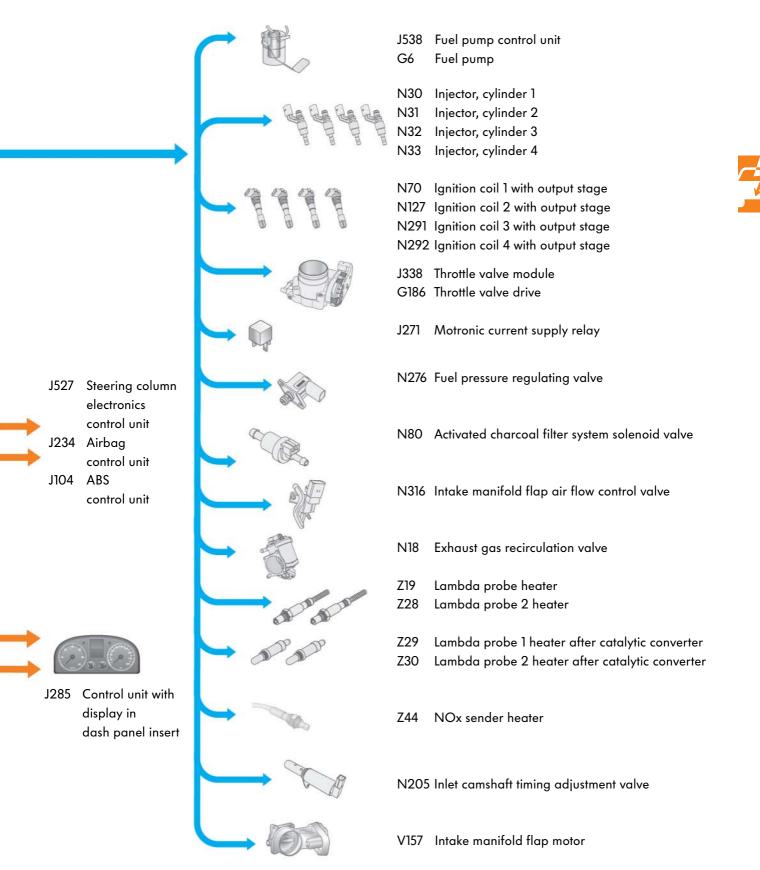


The cylinder head

The 2.01 FSI engine with 4-valve technology has an aluminium cylinder head.

The valves are operated by two overhead camshafts mounted on bearings in a ladder frame to ensure torsional stiffness. The outlet camshaft is driven by toothed belts. The inlet camshaft is driven via the outlet camshaft by a simplex chain.

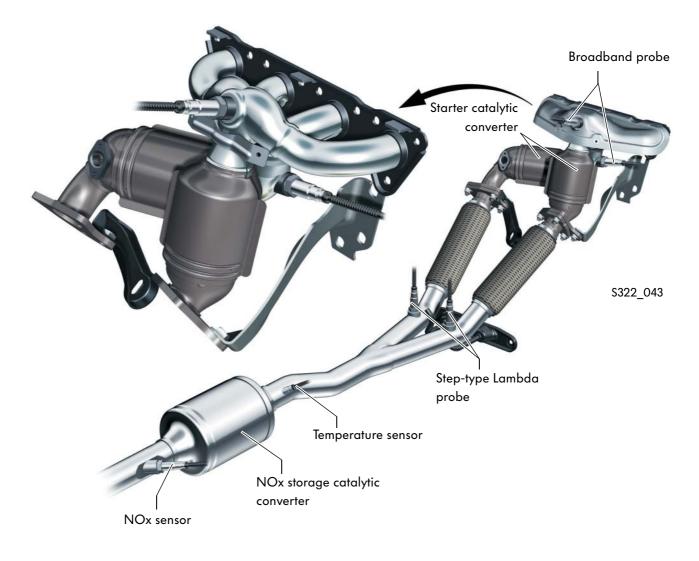

Each intake channel is divided into an upper and lower half by a separating plate. The plates have been shaped so that they can only be fitted in the correct position.


Engine management

System overview

G71 G42	Intake manifold pressure sender Intake air temperature sender
G299	Intake air temperature sender 2
G28	Engine speed sender
G40	Hall sender
J338 G187 G188	Throttle valve module Throttle valve drive angle sender 1 Throttle valve drive angle sender 2
G79 G185	Accelerator pedal position sender Accelerator pedal position sender 2
F F47	Brake light switch Cruise control system brake pedal switch
G247	Fuel pressure sender, high pressure
G410	Fuel pressure sender, low pressure
G61 G66	Knock sensor Knock sensor 2
G62	Coolant temperature sender
G83	Radiator outlet coolant temperature sender
G336	Intake manifold flap potentiometer
G212	Exhaust gas recirculation potentiometer
	Lambda probe Lambda probe II Lambda probe after catalytic converter Lambda probe II after catalytic converter
	Exhaust gas temperature sender
J583	NOx sender NOx sensor control unit
G294	Brake servo pressure sensor
G476	Clutch position sender

S322_042

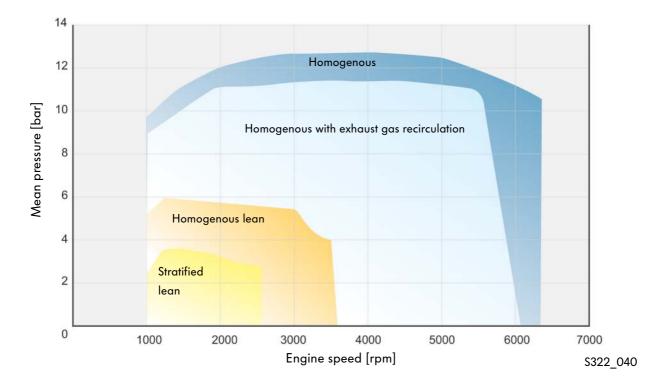

Exhaust system

The front section of the exhaust system is split into dual pipes to increase the torque in the lower rev range. Both exhaust sections are equipped with starter catalytic converters.

The starter catalytic converters have been permanently fixed to the two exhaust manifolds.

Two broadband probes monitor the mixture composition for the starter catalytic converters. Two step-type Lambda probes come after the starter catalytic converters (planar Lambda probes). These monitor the efficiency of the starter catalytic converters. The two exhaust sections then join together at the NOx storage catalytic converter.

In lean mix operation, the storage catalytic converter temporarily stores nitric oxide (NOx). The NOx sensor monitors the degree of saturation and triggers regeneration of the storage catalytic converter.

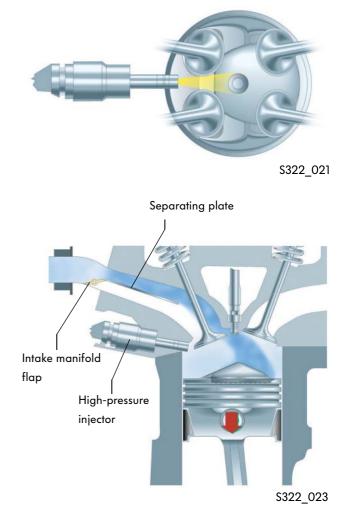

Operating modes

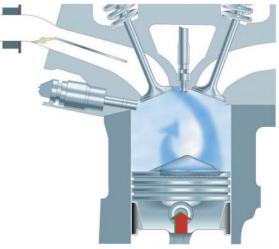
The air-guided combustion method allows use of homogenous and stratified charge modes.

The engine electronics select the best operating mode depending on the load and the position of the accelerator pedal. There are 4 main modes:

- Stratified lean with exhaust gas recirculation (EGR)
- Homogenous lean without EGR
- Homogenous with Lambda = 1 and EGR
- Homogenous with Lambda = 1 without EGR

You will find further information in the self-study programme SSP 253 "The petrol direct injection system with Bosch Motronic MED 7".

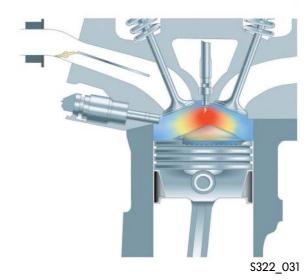

Stratified charge mode

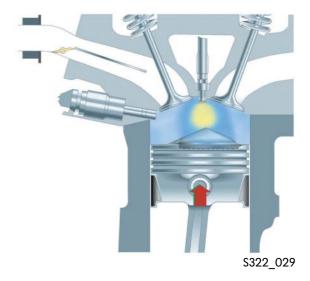

The fuel injection, the combustion chamber geometry and the flow inside the cylinder need to be fine-tuned to make stratified charge mode possible. The following requirements also need to be met:

- 7
- The engine should be in the appropriate load and rev range.
- There cannot be any exhaust gas-related errors in the system.
- The coolant temperature should be above 50 °C.
- The temperature of the NOx storage catalytic converter should be between 250 °C and 500 °C.
- The intake manifold flap should be closed.

The intake manifold flap closes the lower intake duct according to the engine map. As a result, the increased incoming mass of air has to flow through the upper intake duct and starts a tumbling charge movement in the cylinder.

The tumbling air flow is enhanced in the cylinder by the air-flow recess in the piston and the upwards movement of the piston.

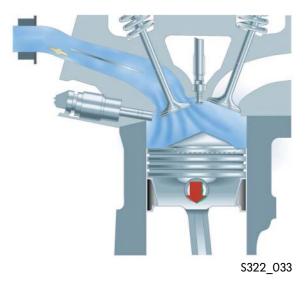



S322_025

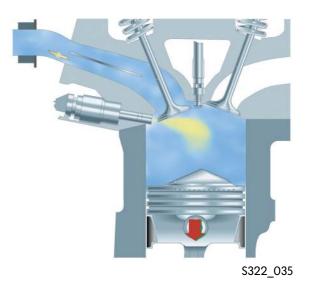
The fuel is injected during the compression stroke just before the ignition point. The fuel is injected at high pressure (40-110 bar) into the flow of air. The air flow then carries the ignitable mixture to the spark plug.

As the injection angle is quite flat, the fuel mist virtually does not come into contact with the the piston head. This is known as an "air-guided" method.

Upon combustion, there is a layer of insulating air between the ignited mixture and the cylinder wall. This reduces the amount of heat transferred via the engine block and thus improves efficiency.

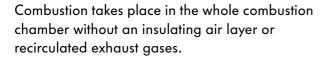


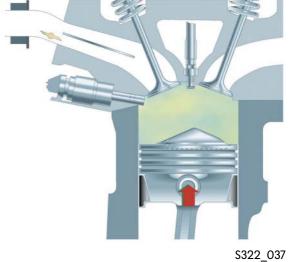
S322_027

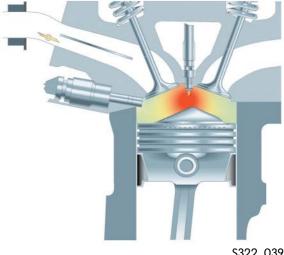

Homogenous mode

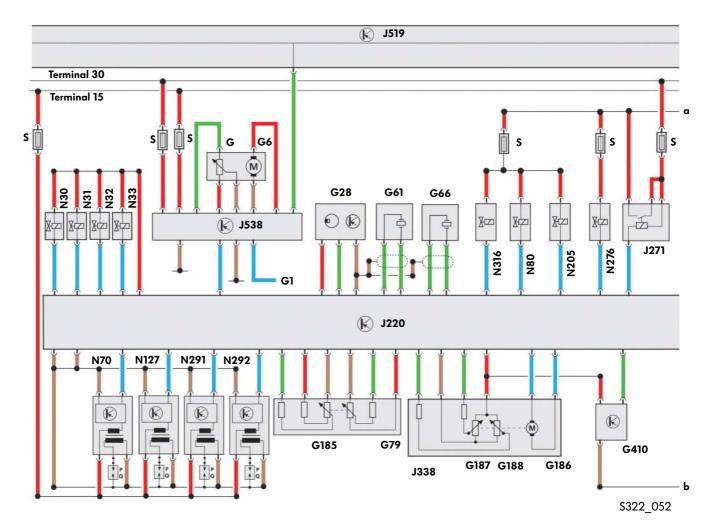
In homogenous mode, the intake manifold flap is moved to an intermediate position according to the engine map.


In the combustion chamber, an optimum air flow for achieving lower fuel consumption and emissions is created.



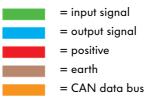

In homogenous mode, the fuel is injected during the intake stroke and not in the compression phase as with stratified charge mode.

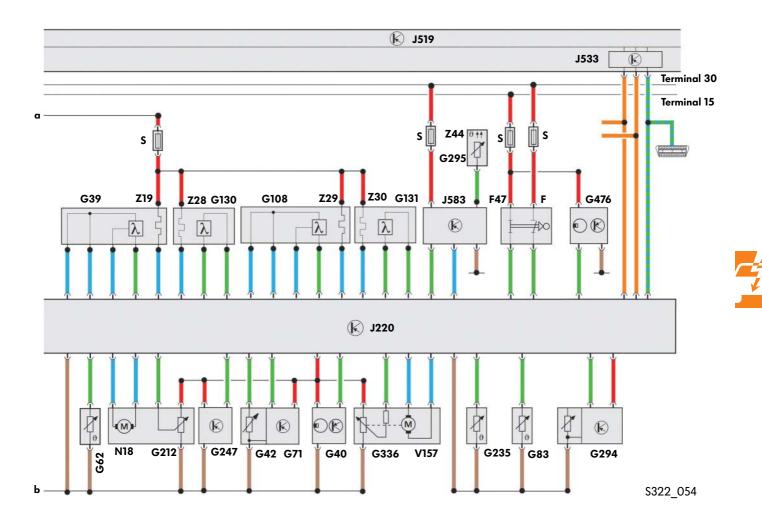

As the fuel is injected during the intake stroke, the fuel-air mixture has more time to mix thoroughly before ignition.



\$322_039

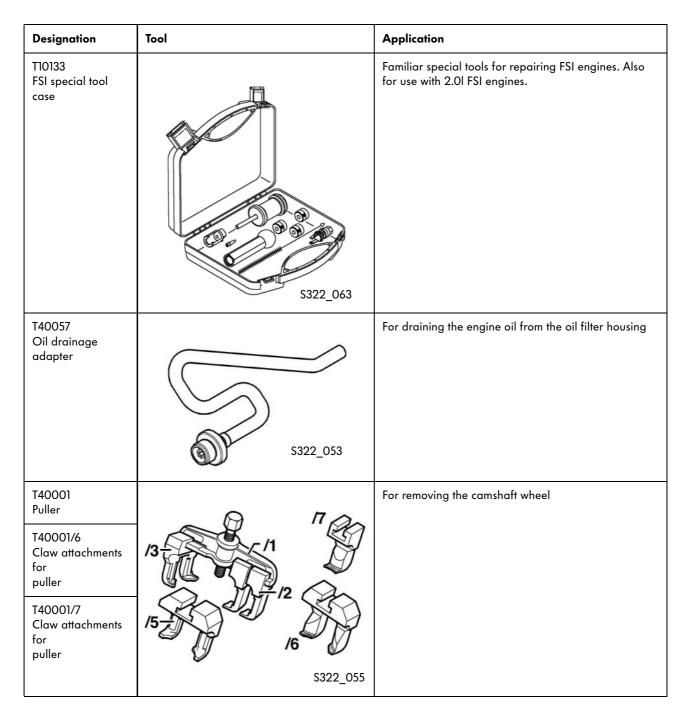
The advantages of homogenous mode are brought about by direct injection during the intake stroke. The fuel evaporation removes some of the heat from the incoming air. Cooling the interior reduces the knocking tendency and thus increases the engine compression and efficiency.


Functional diagram


- F Brake light switch
- F47 Cruise control system brake pedal switch
- G Fuel gauge sender
- G1 Fuel gauge
- G6 Fuel pump
- G28 Engine speed sender
- G39 Lambda probe
- G40 Hall sender
- G42 Intake air temperature sender
- G61 Knock sensor
- G62 Coolant temperature sender
- G66 Knock sensor 2
- G71 Intake manifold pressure sender
- G79 Accelerator pedal position sender
- G83 Radiator outlet coolant temperature sender
- G108 Lambda probe II

- G130 Lambda probe after catalytic converter
- G131 Lambda probe II after catalytic converter
- G185 Accelerator pedal position sender 2
- G186 Throttle valve drive
- G187 Throttle valve drive angle sender 1
- G188 Throttle valve drive angle sender 2
- G212 Exhaust gas recirculation potentiometer
- G235 Exhaust gas temperature sender
- G247 Fuel pressure sender, high pressure

Colour code/legend



- G294 Brake servo pressure sensor
- G295 NOx sender
- G299 Intake air temperature sender 2
- G336 Intake manifold flap potentiometer
- G410 Fuel pressure sender, low pressure
- G476 Clutch position sender
- J271 Motronic current supply relay
- J338 Throttle valve module
- J519 Onboard supply control unit
- J533 Data bus diagnostic interface
- J538 Fuel pump control unit
- J583 NOx sensor control unit
- N18 Exhaust gas recirculation valve
- N30 Injector, cylinder 1
- N31 Injector, cylinder 2
- N32 Injector, cylinder 3
- N33 Injector, cylinder 4

- N70 Ignition coil 1 with output stage
- N80 Activated charcoal filter system solenoid valve
- N127 Ignition coil 2 with output stage
- N205 Inlet camshaft timing adjustment valve
- N291 Ignition coil 3 with output stage
- N292 Ignition coil 4 with output stage
- N276 Fuel pressure regulating valve
- N316 Intake manifold flap air flow control valve
- V157 Intake manifold flap motor
- Z19 Lambda probe heater
- Z28 Lambda probe 2 heater
- Z29 Lambda probe 1 heater after catalytic converter
- Z30 Lambda probe 2 heater after catalytic converter
- Z44 NOx sender heater

New special tools

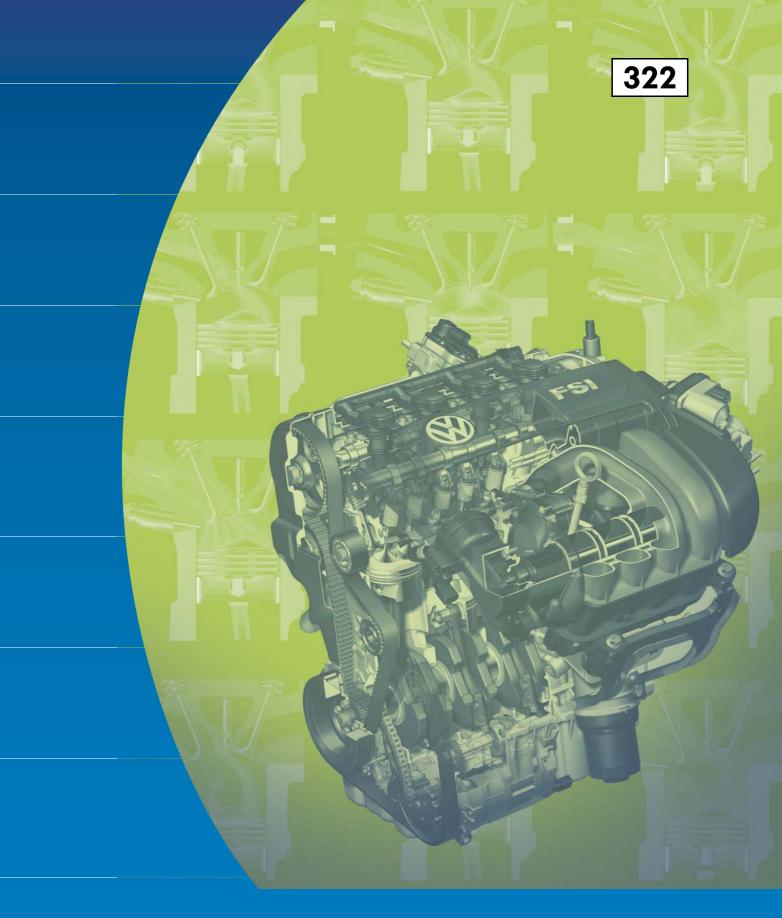
1. The engine electronics select the best operating mode depending on the load and the position of the accelerator pedal. Which 4 main modes are used by the 2.01 FSI engine?

a)	
b)	
c)	
d)	

2. What is meant by the "air-led" method used in stratified charge mode?

- a) The fuel is injected in the direction of the piston head. The fuel mist is then transported to the spark plug together with the tumble-shaped air flow.
- b) The fuel is injected into the tumble-shaped air flow at a flat angle and transported to the spark plug.
- c) The fuel directly injected during the intake stroke evaporates in the cylinder and draws part of heat from the incoming air mass.

3. Where is the NOx sensor located in the exhaust system?


- a) In front of the NOx storage catalytic converter.
- b) In front of the step-type Lambda probes.
- c) After the NOx storage catalytic converter.
- d) In front of the starter catalytic converters.

Answers

- 1.) a) Stratified injection with exhaust gas recirculation (EGR)
- b) Homogenous lean without EGR
- c) Homogenous with Lambda = 1 and EGR
- d) Homogenous with Lambda = 7 without EGR

d (.S

э (.£

© VOLKSWAGEN AG, Wolfsburg, VK-36 Service Training All rights and rights to make technical alterations reserved 000.2811.43.20 Technical status 10/03

> This paper was manufactured from pulp that was bleached without the use of chlorine.